Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences
نویسندگان
چکیده
The binding of SeqA protein to hemi-methylated GATC sequences (hemi-sites) regulates chromosome initiation and the segregation of replicated chromosome in Escherichia coli. We have used atomic force microscopy to examine the architecture of SeqA and the mode of binding of one molecule of SeqA to a pair of hemi-sites in aqueous solution. SeqA has a bipartite structure composed of a large and a small lobe. Upon binding of a SeqA molecule to a pair of hemi-sites, the larger lobe becomes visibly separated into two DNA binding domains, each of which binds to one hemi-site. The two DNA binding domains are held together by association between the two multimerization domains that make up the smaller lobe. The binding of each DNA binding domain to a hemi-site leads to bending of the bound DNA inwards toward the bound protein. In this way, SeqA adopts a dimeric configuration when bound to a pair of hemi-sites. Mutational analysis of the multimerization domain indicates that, in addition to multimerization of SeqA polypeptides, this domain contributes to the ability of SeqA to bind to a pair of hemi-sites and to its cooperative behavior.
منابع مشابه
Dynamic Distribution of SeqA Protein across the Chromosome of Escherichia coli K-12
The bacterial SeqA protein binds to hemi-methylated GATC sequences that arise in newly synthesized DNA upon passage of the replication machinery. In Escherichia coli K-12, the single replication origin oriC is a well-characterized target for SeqA, which binds to multiple hemi-methylated GATC sequences immediately after replication has initiated. This sequesters oriC, thereby preventing reinitia...
متن کاملCrystallization and preliminary X-ray diffraction analysis of SeqA bound to a pair of hemimethylated GATC sites.
Escherichia coli SeqA is a negative regulator of DNA replication. The SeqA protein forms a high-affinity complex with newly replicated DNA at the origin of replication and thus prevents premature re-initiation events. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. These two functions depend on SeqA binding to mu...
متن کاملStructural insights into the cooperative binding of SeqA to a tandem GATC repeat
SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication sy...
متن کاملBinding of SeqA protein to DNA requires interaction between two or more complexes bound to separate hemimethylated GATC sequences.
The SeqA protein binds to the post-replicative forms of the origins of replication of the Escherichia coli chromosome (oriC) and the P1 plasmid (P1oriR) at hemimethylated GATC adenine methylation sites. It appears to regulate replication by preventing premature reinitiation. However, SeqA binding is not exclusive to replication origins: different fragments with hemimethylated GATC sites can bin...
متن کاملNon-random distribution of GATC sequences in regions of promoters stimulated by the SeqA protein of Escherichia coli.
The SeqA protein of Escherichia coli is not only the main negative regulator of DNA replication initiation but also a specific transcription factor. It binds to hemimethylated GATC sequences and, with somewhat different specificity, to fully methylated GATC regions. Recently, a microarray analysis was reported, in which transcriptomes of wild-type and DeltaseqA strains were compared. Although i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005